面向自动驾驶的多模态大模型在 “推理链” 上多以文字或符号为中介,易造成空间 - 时间关系模糊与细粒度信息丢失。FSDrive(FutureSightDrive)提出 “时空视觉 CoT”(Spatio-Temporal Chain-of-Thought),让模型直接 “以图思考”,用统一的未来图像帧作为中间推理步骤,联合未来场景与感知结果进行可视化推理。该方法在不改动原有 MLLM 架构的前提下,通过 “词表扩展 + 自回归视觉生成” 激活图像生成能力,并以 “由易到难” 的渐进式视觉 CoT 注入物理先验。模型既充当 “世界模型” 预测未来,又作为 “逆动力学模型” 进行轨迹规划。
多模态大语言模型(MLLM)凭借世界知识与可解释推理能力,正加速进入端到端 “视觉 - 语言 - 动作”(VLA)自动驾驶范式。但现有做法多依赖离散文本 CoT(如规则描述、坐标),本质上是对视觉信息的高度符号压缩,存在跨模态语义鸿沟与时空关系表征不足的问题。
核心问题:面向与物理世界深度交互的自动驾驶,思考过程更应接近 “模拟与想象” 的视觉推演,而非纯符号逻辑?
FSDrive 提出 “时空视觉 CoT”,将未来场景与感知结果(车道线、3D 检测框)统一生成到一张未来图像帧中,作为中间推理步骤。一方面用普通未来帧承载时序演化,另一方面用 “红色车道线与 3D 框” 提供可驾驶区域与关键动态物体的空间先验,从而在视觉域内完成因果推断与决策规划。
本文关键创新:
1) 统一的 “视觉中介” 替代文字 / 表格中介,消除跨模态语义鸿沟;
2) 以极小代价在现成 MLLM 上 “激活” 图像生成能力:仅通过扩展词表引入 VQ 类视觉 token,无需改架构大改或海量训练;
3) 渐进式视觉 CoT:先生成 “物理约束” 的粗粒度感知图(车道线 / 3D 框),再生成细节丰富的未来帧,显式注入物理合理性。
价值:保持端到端简洁链路与可解释可视化推理,同时可大规模利用无标注视频数据学习世界演化规律。
FSDrive 整体框架:
统一预训练范式:理解 + 生成
渐进式视觉 CoT(物理先验→细节补全)
时空视觉 CoT 用于规划
训练策略
端到端轨迹规划
相比同时具备视觉生成的 Doe-1(Lumina-mGPT-7B),FSDrive 在不使用自车状态时取得更低 L2 与更低碰撞:
与 LLaVA-7B 系列下的近期方法(如 OminiDrive、RDA-Driver)相比,FSDrive 在相同设置下展现出强竞争力,说明框架可广泛迁移到主流 MLLM。
未来帧生成质量(FID)
在 128×192 分辨率下,FSDrive(自回归)FID=10.1,优于多数扩散式世界模型(如 GEM 10.5)并显著优于 Doe-1(15.9),兼顾实时性与质量。
场景理解(DriveLM GVQA)
Final Score 0.57,超过 OminiDrive(0.56)、Cube-LLM 等;多项语言生成指标与多选准确率(0.72)均表现稳健,表明 “理解 + 生成” 统一预训练的有效性。
定性分析
在错误导航指令下,FSDrive 可通过 “观察 + 未来预测” 的视觉推理纠偏路径,降低潜在碰撞;体现其 “逆动力学” 能力与可解释性。
本文提出 FSDrive:以 “统一的时空视觉 CoT” 作为中间推理,打通未来场景预测与感知结果的视觉表达,让 VLA 在视觉域内完成因果推理与轨迹规划。
方法无需改动原 MLLM 结构,通过扩展词表与自回归训练即可激活图像生成;配合 “由易到难” 的渐进式视觉 CoT,显式注入物理约束,提升未来预测的真实性与一致性。
在规划、生成与理解三大任务的系统验证显示:FSDrive 以更低的数据 / 算力成本实现强竞争力甚至 SOTA 的开放回路表现,并显著降低碰撞风险,推动自动驾驶从 “符号推理” 走向 “视觉推理”。
局限与展望:当前为实时性考虑主要生成前视未来帧,未来可扩展至环视统一预测;同时,随模型落地需重视安全、隐私与监管等伦理合规问题,确保技术向善与可靠部署。